55 research outputs found

    Shark Research: emerging technologies and applications for the field and laboratory

    Get PDF
    Over the last decade, the study of shark biology has benefited from the development, refinement, and rapid expansion of novel techniques and advances in technology. These have given new insight into the fields of shark genetics, feeding, foraging, bioenergetics, imaging, age and growth, movement, migration, habitat preference, and habitat use. This pioneering book, written by experts in shark biology, examines technologies such as autonomous vehicle tracking, underwater video approaches, molecular genetics techniques, and accelerometry, among many others. Each detailed chapter offers new insights and promises for future studies of elasmobranch biology, provides an overview of appropriate uses of each technique, and can be readily extended to other aquatic fish and marine mammals and reptiles

    Dead tired: evaluating the physiological status and survival of neonatal reef sharks under stress

    Get PDF
    Marine protected areas (MPAs) can protect shark populations from targeted fisheries, but resident shark populations may remain exposed to stressors like capture as bycatch and environmental change. Populations of young sharks that rely on shallow coastal habitats, e.g. as nursery areas, may be at risk of experiencing these stressors. The purpose of this study was to characterize various components of the physiological stress response of neonatal reef sharks following exposure to an exhaustive challenge under relevant environmental conditions. To accomplish this, we monitored markers of the secondary stress response and measured oxygen uptake rates (⁠ṀO2⁠) to compare to laboratory-derived baseline values in neonatal blacktip reef (Carcharhinus melanopterus) and sicklefin lemon sharks (Negaprion acutidens). Measurements occurred over three hours following exposure to an exhaustive challenge (gill-net capture with air exposure). Blood lactate concentrations and pH deviated from baseline values at the 3-h sample, indicating that both species were still stressed 3 h after capture. Evidence of a temperature effect on physiological status of either species was equivocal over 28–31°C. However, aspects of the physiological response were species-specific; N. acutidens exhibited a larger difference in blood pH relative to baseline values than C. melanopterus, possibly owing to higher minimum ṀO2⁠. Neither species experienced immediate mortality during the exhaustive challenge; although, single instances of delayed mortality were documented for each species. Energetic costs and recovery times could be extrapolated for C. melanopterus via respirometry; sharks were estimated to expend 9.9 kJ kg−1 (15% of energy expended on daily swimming) for a single challenge and could require 8.4 h to recover. These data suggest that neonatal C. melanopterus and N. acutidens are resilient to brief gill-net capture durations, but this was under a narrow temperature range. Defining species' vulnerability to stressors is important for understanding the efficacy of shark conservation tools, including MPAs

    Repeatability of baited remote underwater video station (BRUVS) results within and between seasons

    Get PDF
    Baited remote underwater video stations (BRUVS) are increasingly being used to evaluate and monitor reef communities. Many BRUVS studies compare multiple sites sampled at single time points that may differ from the sampling time of another site. As BRUVS use grows in its application to provide data relevant to sustainable management, marine protected area success, and overall reef health, understanding repeatability of sampling results is vital. We examined the repeatability of BRUVS results for the elasmobranch community both within and between seasons and years, and explored environmental factors affecting abundances at two sites in Indonesia. On 956 BRUVS, 1139 elasmobranchs (69% rays, 31% sharks) were observed. We found consistent results in species composition and abundances within a season and across years. However, elasmobranch abundances were significantly higher in the wet season. The elasmobranch community was significantly different between the two sites sampled, one site being more coastal and easily accessed by fishermen. Our results demonstrate that while BRUVS are a reliable and repeatable method for surveying elasmobranchs, care must be taken in the timing of sampling between different regions to ensure that any differences observed are due to inherent differences amongst sampling areas as opposed to seasonal dissimilarities

    Continental-scale animal tracking reveals functional movement classes across marine taxa

    Get PDF
    Acoustic telemetry is a principle tool for observing aquatic animals, but coverage over large spatial scales remains a challenge. To resolve this, Australia has implemented the Integrated Marine Observing System's Animal Tracking Facility which comprises a continental-scale hydrophone array and coordinated data repository. This national acoustic network connects localized projects, enabling simultaneous monitoring of multiple species over scales ranging from 100 s of meters to 1000 s of kilometers. There is a need to evaluate the utility of this national network in monitoring animal movement ecology, and to identify the spatial scales that the network effectively operates over. Cluster analyses assessed movements and residency of 2181 individuals from 92 species, and identified four functional movement classes apparent only through aggregating data across the entire national network. These functional movement classes described movement metrics of individuals rather than species, and highlighted the plasticity of movement patterns across and within populations and species. Network analyses assessed the utility and redundancy of each component of the national network, revealing multiple spatial scales of connectivity influenced by the geographic positioning of acoustic receivers. We demonstrate the significance of this nationally coordinated network of receivers to better reveal intra-specific differences in movement profiles and discuss implications for effective management

    Conservation successes and challenges for wide-ranging sharks and rays

    Get PDF
    Overfishing is the most significant threat facing sharks and rays. Given the growth in consumption of seafood, combined with the compounding effects of habitat loss, climate change, and pollution, there is a need to identify recovery paths, particularly in poorly managed and poorly monitored fisheries. Here, we document conservation through fisheries management success for 11 coastal sharks in US waters by comparing population trends through a Bayesian state-space model before and after the implementation of the 1993 Fisheries Management Plan for Sharks. We took advantage of the spatial and temporal gradients in fishing exposure and fisheries management in the Western Atlantic to analyze the effect on the Red List status of all 26 wide-ranging coastal sharks and rays. We show that extinction risk was greater where fishing pressure was higher, but this was offset by the strength of management engagement (indicated by strength of National and Regional Plan of Action for sharks and rays). The regional Red List Index (which tracks changes in extinction risk through time) declined in all regions until the 1980s but then improved in the North and Central Atlantic such that the average extinction risk is currently half that in the Southwest. Many sharks and rays are wide ranging, and successful fisheries management in one country can be undone by poorly regulated or unregulated fishing elsewhere. Our study underscores that well-enforced, science-based management of carefully monitored fisheries can achieve conservation success, even for slow-growing species

    A standardised framework for analysing animal detections from automated tracking arrays

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.Background: Over the past 15 years, the integration of localised passive telemetry networks into centralised data repositories has greatly enhanced our ability to monitor the presence and movements of highly mobile and migratory species. These large-scale networks are now generating big data, allowing meta-analyses across multiple species, locations, and temporal scales. Broad-scale comparisons of animal movement metrics are constrained by the use of diverse analytical techniques among researchers. Accordingly, there is a need for a tool-set to assist in calculating animal movement metrics that can be easily applied to datasets from local studies to large-scale cooperative networks. Results: We present a standardised framework and an associated analysis tool-set that facilitates the calculation of a range of activity space and movement metrics for passive telemetry datasets. Application of the tool-set is demonstrated using data from the Integrated Marine Observing System continental-scale network of underwater acoustic receivers. We show how the metrics can: (1) be directly compared among multiple species monitored at multiple sites; (2) be compared among multiple species tagged at a single study site; and (3) assess changes in activity space metrics over time. Conclusions: Establishing a framework and tool-set to analyse data from large-scale networks progresses the field of passive telemetry beyond the traditional individual-, species-, or location-centric approaches to facilitate national- or international-scale outputs that better address important questions in the field of movement ecology.Integrated Marine Observing Syste

    Extinction risk and conservation of the world\u27s sharks and rays

    Get PDF
    The rapid expansion of human activities threatens ocean-wide biodiversity. Numerous marine animal populations have declined, yet it remains unclear whether these trends are symptomatic of a chronic accumulation of global marine extinction risk. We present the first systematic analysis of threat for a globally distributed lineage of 1,041 chondrichthyan fishes—sharks, rays, and chimaeras. We estimate that one-quarter are threatened according to IUCN Red List criteria due to overfishing (targeted and incidental). Large-bodied, shallow-water species are at greatest risk and five out of the seven most threatened families are rays. Overall chondrichthyan extinction risk is substantially higher than for most other vertebrates, and only one-third of species are considered safe. Population depletion has occurred throughout the world’s ice-free waters, but is particularly prevalent in the Indo-Pacific Biodiversity Triangle and Mediterranean Sea. Improved management of fisheries and trade is urgently needed to avoid extinctions and promote population recovery

    Overfishing Drives Over One-Third of All Sharks and Rays Toward a Global Extinction Crisis

    Get PDF
    The scale and drivers of marine biodiversity loss are being revealed by the International Union for Conservation of Nature (IUCN) Red List assessment process. We present the first global reassessment of 1,199 species in Class Chondrichthyes-sharks, rays, and chimeras. The first global assessment (in 2014) concluded that one-quarter (24%) of species were threatened. Now, 391 (32.6%) species are threatened with extinction. When this percentage of threat is applied to Data Deficient species, more than one-third (37.5%) of chondrichthyans are estimated to be threatened, with much of this change resulting from new information. Three species are Critically Endangered (Possibly Extinct), representing possibly the first global marine fish extinctions due to overfishing. Consequently, the chondrichthyan extinction rate is potentially 25 extinctions per million species years, comparable to that of terrestrial vertebrates. Overfishing is the universal threat affecting all 391 threatened species and is the sole threat for 67.3% of species and interacts with three other threats for the remaining third: loss and degradation of habitat (31.2% of threatened species), climate change (10.2%), and pollution (6.9%). Species are disproportionately threatened in tropical and subtropical coastal waters. Science-based limits on fishing, effective marine protected areas, and approaches that reduce or eliminate fishing mortality are urgently needed to minimize mortality of threatened species and ensure sustainable catch and trade of others. Immediate action is essential to prevent further extinctions and protect the potential for food security and ecosystem functions provided by this iconic lineage of predators

    Data Descriptor: Australia’s continental-scale acoustic tracking database and its automated quality control process

    Get PDF
    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the metadata files made available in this article.Our ability to predict species responses to environmental changes relies on accurate records of animal movement patterns. Continental-scale acoustic telemetry networks are increasingly being established worldwide, producing large volumes of information-rich geospatial data. During the last decade, the Integrated Marine Observing System’s Animal Tracking Facility (IMOS ATF) established a permanent array of acoustic receivers around Australia. Simultaneously, IMOS developed a centralised national database to foster collaborative research across the user community and quantify individual behaviour across a broad range of taxa. Here we present the database and quality control procedures developed to collate 49.6 million valid detections from 1891 receiving stations. This dataset consists of detections for 3,777 tags deployed on 117 marine species, with distances travelled ranging from a few to thousands of kilometres. Connectivity between regions was only made possible by the joint contribution of IMOS infrastructure and researcher-funded receivers. This dataset constitutes a valuable resource facilitating meta-analysis of animal movement, distributions, and habitat use, and is important for relating species distribution shifts with environmental covariates

    Emergent research and priorities for shark and ray conservation

    Get PDF
    Over the past 4 decades there has been a growing concern for the conservation status of elasmobranchs (sharks and rays). In 2002, the first elasmobranch species were added to Appendix II of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). Less than 20 yr later, there were 39 species on Appendix II and 5 on Appendix I. Despite growing concern, effective conservation and management remain challenged by a lack of data on population status for many species, human−wildlife interactions, threats to population viability, and the efficacy of conservation approaches. We surveyed 100 of the most frequently published and cited experts on elasmobranchs and, based on ranked responses, prioritized 20 research questions on elasmobranch conservation. To address these questions, we then convened a group of 47 experts from 35 institutions and 12 countries. The 20 questions were organized into the following broad categories: (1) status and threats, (2) population and ecology, and (3) conservation and management. For each section, we sought to synthesize existing knowledge, describe consensus or diverging views, identify gaps, and suggest promising future directions and research priorities. The resulting synthesis aggregates an array of perspectives on emergent research and priority directions for elasmobranch conservation
    corecore